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The cross-section differential in the energies and angles of all final particles for the bremsstrahlung which 
accompanies nuclear excitation is derived, in first Born approximation and neglecting nuclear recoil, in terms 
of the form factors corresponding to the Coulomb and current interactions, which are left arbitrary through
out the calculation. This cross section is integrated over all photon angles, without approximation, and its 
limit for large energies (E^>mc2) of the initial and final electron is discussed. As in the case of elastic elec
tron scattering considered previously, photons emitted in the direction of either the incoming or outgoing 
electron contribute to this integrated cross section terms of order In (E/mc2), while all other photon directions 
contribute terms of relative order 1. We give explicit expressions for these terms, as well as a numerical 
evaluation for some typical cases; the formulas are also valid for electron scattering angles # equal or very 
close to 180°. It is shown explicitely that the logarithmically divergent terms which appear in the integral of 
our high-energy cross section over the energy of the final electron are cancelled exactly if to this integral one 
adds the radiative corrections to the inelastic electron scattering cross section. 

I. INTRODUCTION 

TH E Bethe-Heitler cross section with arbitrary 
form factor has been integrated in a previous 

paper1 over all photon angles and without making 
any approximation, for the case of elastic electron 
scattering. This result was used to calculate the 
radiative tail, which is the extension of the elastic 
peak (or an inelastic peak) in the spectrum of scattered 
electrons due to the emission of real, hard, photons. 
We showed how the contribution to the cross section 
from photons emitted in the direction of either the 
incoming or the outgoing electron, denoted as "peak 
contribution," gives terms of order hie (where e is the 
electron energy expressed in units of mc2) and that the 
contribution from all other photon directions, the 
"background contribution," is of relative order 1. 

Since our Paper (I) appeared, Ginsberg and Pratt2 

have performed a calculation similar to ours, but in 
which they take into account the current interaction 
as well as the Coulomb interaction for the elastic 
scattering of electrons, while we dealt only with the 
Coulomb interaction. Their calculation is not con
cerned with the separation into peak and background 
contributions, and therefore the numerical integration 
for several specific form factors is performed at an 
earlier stage than in ours, without discussing the relative 
magnitude of the various terms. 

In this paper we extend those two calculations to 
include the case of inelastic electron scattering, in 
which the electron loses energy not only by radiation 
(bremsstrahlung) but also by exciting the nucleus. 
We will first derive the cross section differential in the 
energies and angles of all final particles for brems
strahlung associated with nuclear excitation, and this 

* Work partially supported by the U. S. Office of Naval Re
search. 

f On leave of absence from Centre National de la Recherche 
Scientifique: Laboratoire de l'Accelerateur Lineaire, Orsay, 
France. 

*L. C. Maximon and D. B. Isabelle, Phys. Rev. 133, B1344 
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2 E. S. Ginsberg and R. H. Pratt, Phys. Rev. 134, B773 (1964). 
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will be done in first Born approximation and neglecting 
nuclear recoil. This cross section is given in terms of the 
form factors corresponding to the nuclear transition, 
which are left arbitrary throughout the calculation. 
As we will see, these form factors may be expressed in 
terms of the reduced matrix element for the given 
nuclear transition. They take into account both 
Coulomb and current interactions. As in I, we are 
concerned here with the radiative tail (emission of 
real, hard, photons) and not with radiative corrections 
(emission and reabsorption of virtual photons and 
emission of real, soft photons). We next perform the 
integration of the cross section over all photon angles, 
keeping arbitrary form factors and without approxi
mation. After this we consider in detail the limit of the 
integrated cross section for large energies of the initial 
and final electrons, € i » l , €%^>1, the largest neglected 
terms being of order l/e22. I t is shown that, as in the 
elastic case described in I, there is here a separation of 
the cross section into peak and background terms. 
Explicit expressions as well as numerical examples are 
given for both types of terms. We will also discuss in 
detail the case of scattering angle very close (or equal) 
to 180°. In the course of the discussion, the high-energy 
cross section is integrated over the energy of the final 
electron, giving logarithmically divergent terms with 
the factor ln(l/A&), where Ak is the minimum photon 
energy included in this integration, in units of mc2. 
I t is shown explicitly that if to this integral of the 
radiative tail one adds the radiative corrections to the 
inelastic electron scattering cross section, then these 
divergent terms are cancelled exactly. 

II. INELASTIC BREMSSTRAHLUNG CROSS SECTION 

The cross section for scattering of an electron with 
emission of a hard photon and excitation of the scatter
ing nucleus is derived here in a manner closely parallel
ing that of Alder et al.d who treat the case of electron 

3 K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther, 
Rev. Mod. Phys. 28, 432 (1956). Note in particular Sec. II E.3, 
pp. 475, 476, in this reference. For further details and a specific 
application of the analysis of Alder et at., see also Ref. 15. 



RADIATIVE TAIL FOR INELASTIC ELECTRON SCATTERING B675 

scattering with nuclear excitation but without photon ing to their Eq. (II E.33) but including emission of a 
emission. For the transition matrix element correspond- photon we find 

ff'=(/|3C(»|i) = efe(4^H — ) ( - ] ( — ) | Z E 
-w2) Xm&IXmcl \kmc*/ I x=i M=-X A(<?; 

XC(M2|Ar|«1)-gXL3FxM(g)(/ /M / |2ni(£X, -», q)\IiMt) 

<c X ^+l(_l)M 
<«s|Az,|«1>7xM(4)<//Jf/|3n;(CXJ - M , i)\iMi)\, (1) 

(2) 

where 

A r s (a- e*i£2a:/d2)- (oJTia • e*/rfi), 

AL^EE ( a . e*K2/d2)- (Rivef/fa), 

£ i = € i - * + a - ( P i - k ) + 0 , 

^2=€2+^+a-(p2+k)+/3, 

rfi= 2k(ei~pi cos#i), 

d2—2k(e2—^2cos02). 

Here, ^i and w2 are the normalized plane-wave spinors 
of the initial and final electron, respectively, a and /3 
are the usual Dirac matrices, and e is the polarization 
vector of the emitted photon. Finally, 

L f l = - f q X V « (3) 

and operates on q. The notation used is the following: 

(ei,pi), (e2,p2): energy and momentum of the initial 
and final electron, respectively. 

k, k : energy and momentum of the emitted photon. 
co, q: energy and momentum transfer to the nucleus. 
(Oi,<Pi), (#2,^2): polar and azimuthal angles of the 

initial and final electron, respectively, in a coordinate 
system with z axis along the direction of the photon, 
k. 

($&,0&)> (#,#) • polar and azimuthal angles of the photon 
and final electron, respectively, in a coordinate 
system with z axis along the direction of the initial 
electron, pi. 

These angles are related by 

cos02=cos$ cos^+sintf smdk cos(0—<f>k), 

cos$ = cos#i cos#2+sin#i sin#2 cos(<pi— <p2) 3 

(4) 

and 
co=ei— 62—k, q = P i — p 2 — k . (5) 

The units of energy and momentum are tnc2 and mc 
throughout. 

The operators for the Coulomb and electric and 
magnetic current multipole transitions, which have 
been indicated by 911 in Eq. (1), are expressed in terms 
of the nuclear charge and current density operators 

pn and j n by 

(4T)l/2 , 

Ze J 

9 T C ( £ X ^ ) -
(4TT) 1/2 

Zeq(\+1) 

X fu-VXLr(jx(qr)YXfl(d,<p))d*r, (6) 

1/2 

9fTC(AfX,M,?)=-

where 

i(4?r) 

Ze(\+1) 

X U'Lr(jx(qr)Y^(e,<p))dh, 

L r = — i r X V r . (7) 

These operators are thus related to those of Ref. 3 
by a factor4: 

?X (47T)1'2 

2flX = 9TCAldor et al.> (8) 

(2X+1)!I Ze 

The cross section is then given by 

2w pf 

^ = - E I # T - , (9) 
where pf—p2e2d&2k2dkdQk(inc2y/(2irfocy is the density 
of final states (dS22==sin#d$d# and dttk— sindkddkd(/)k 

refer to the angles of p2 and k, respectively) and 
Vi~pic/ ei is the velocity of the incident electron. Here 
X)a indicates the average over the initial and sum over 
the final states which are not observed. We shall 
average over the initial nuclear spin orientation Mi and 
initial electron spin direction £1, and sum over the final 
nuclear spin orientation M/, the final electron spin 
direction £2, and the photon polarization e. To this 

4 Reference 3, p. 446 Eqs. (II B.16) and (II B.17) and p. 476 
Eq. (II E.38), 
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end we write, following Alder et al.,d the nuclear transi- (1) and use the orthogonality relations for the 3 — j 
tion matrix elements in terms of the reduced matrix coefficients6: 
elements. We have, for the case of the Coulomb 
interaction, 

(IfMf\WC(p\Mq)\IiMi) 

_<-,)<-»{_* l ^)</,ll»(a,,)l|/,> 00) = ( 2 x + D - ^ „ . (i.) 
f ** % The cross section, summed over all final spins and 

with identical equations for the electric and magnetic polarizations and averaged over initial spins then 
current transition matrix elements. We insert (10) in becomes 

Ui,M/\—Mf JJL Mi/\—Mf ix Mj 

1 1 2 ? r ' , ,, Pf 

da = £ |#'|2— 
2 2Ii+l h M,-lM/ffi,f2,e Vi 

1 e2/Ze2\2p2dk /167T2*€i€2> 
_[ ) dQ2dQk( 

/167T^€i€2\ 

\ 2A-+1 / (2TT)2 hc\mc2/ pi k \ 2A-+1 

x l E I E E ^K^|Ar|«i>-4xLflFXM(3)|»K/,||9ri:(£\^)||/<>|» 
fi,f2.elx=«i M=-X (2A+1)A2(?2-C02)2 

+ \(u2\AT\u1)'lqYUq)\2\(If\\^(M\M^)\2l 

+ Z £ -K«2|AL|«i>7x,(«)|8|<//IWa^)||/<>|4. (12) 
X=OM=-X (2A+1)?4 J 

In order to perform the sums over /* in (12) we require as in (7). These formulas may all be obtained from6 

the following formulas, which are discussed and justified _ , ,s , ... r-, , , -, s 
below: £ Fim*(^")F,m(r") = C(2;+l)/4x]Pi(cosx), (13g) 

E F t a * W F h . W = ( 2 / + l ) / 4 r , (13a) w h e r e 

r! = (r ,6 ,<p), i ={r ,6 ,<p ) , 
H(A-LYim(f))*Ylm(f) = 0, (13b) 

L(A-LFZw(r))*(B-LFZm(r)) 

and 

cosx=cos0' cos0"+sin0' sin0" cos(<p'— <p"). 

nn-Liwijiu/fi I / A Y ^ / R Y ^ m , ^ S e t t i n g r , = = r , / = = r i n (13s) S i v e s (13a) a t o n c e- N o t i n g 
= p(/+l)(2/+l)/&r](AXr)- (BXr), (13c) ^ ^ s p h e r i c a l coord inates 

E(LFJroW)*.(LF,TO(0) = /(/+l)(2/+l)/4ir, (13d) . 1 d d. 
L r=-rf-ur; +*„-), 

Z(^XLF,m(r))*.(LF^(r)) = 0, (13e) V s i n * ^ ^ 
operating on both sides of (13g) with (A-Lr/)* and then 

Y,(fXlYlm(r))*-(rX\;Yim{r)) setting r '= r" = r gives (13b). Operating on both sides 
m of (13g) with (A-Lr0*(B-Lr//) and then setting r' 

= Y (CLF (f)Y*(LY (f) = r" = r gives (13c). The expression in (13d) may be 
Z-, IV im\ )) \ imK j written in the form 

-(f-LYlm(f))*(f.LYlm(f))} Zm&Ylm(r)r-(LYlm(f)) 

. = 1(1+1) (21+1)/4T. (13f) =EiEm(ei -LF^W)*(e , -LFi m W), 

XT A , « . . l T T -v. where e,- (7=1,2,3) forms a set of orthonormal 
Here Aand 15 are arbitrary vectors and L^L r~-~2rXV r , j , • r *u * / ^ A rp 

^ r r vectors, and hence is of the same form as (13c). To 
" # evaluate (13e) we choose d and/e? to be two mutually 

5 A. R. Edmonds, Angular Momentum in Quantum Mechanics 
(Princeton University Press, Princeton, New Jersey, 1957), 
p. 47, Eq. (3.7.8). Reference 5, p. 63, Eq. (4.6.6). 
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in (15): orthogonal vectors such that e i X e 2 = n Then 

m 

= E C ( e i X e 2 ) X L F t a W ] * - ( L 7 f a , ( / ' ) ) . 
m 

= Z [ e 2 ( e 1 - L F i m ( f ) ) - e 1 ( e 2 - L F J m W ) ] - ( L F i m ( r ) ) 
m 

= E {(el-LYlm(r))*(ei-LYlm(f)) 
m 

~(e 2 -LF Z m ( f ) )*(e r LF Z w ( r ) )} 

so that we again have sums of the same form as (13c). 
Finally, (13f) follows from (13c) and (13d). 

We then carry out in closed form the sums over 
£i, {2, e, and \x indicated in (12). The entire dependence The factors ah and or, associated with the interaction 
of these sums on X is contained in the simple factor of the electron with the electromagnetic field, are given 
shown explicitly, viz., 2X+1 in (14) and X(X+1) (2X+1) by 

x 1 2X+1 
E * Z K « 2 | A ^ | « 1 > K X M ( 5 ) I 2 = *L, (14) 

M = - * r i . f2 ,e 4& 2 € i€2 47T 

I I I | ^ 2 | A r | ^ ) . g X L , F x M ( g ) | 2 

X 

= 1 1 I K«2|A r |«i>-L f lFxM(5)|2 

/X=_X f l , f 2 .3 

1 X(X+1)(2X+1) 

4#. eie2 8TT 
~0>T' (15) 

^ 2 sin^1[4€2(e2+co)+co2-^2] />2
2 sin202[4€i(€i-co)+o>2--g2] 

0\L = -
(ei — pi COS0i)2 (€2~p2 COS02)2 

2 ^ 2 sin0! sin02 cos(<?i- ^2)[2ei(€i-co)+2€2(€2+co)+co2-g2] 2&2(^i2 sin20i+^2
2 sin202) 

and 

aT-

(ei—pi cos0x) (e2—p2 cos02) 

£i2 sin20i[4e2(e2+co)+^2-co2~4] />2
2 s in 20 2 [4€i(e i -co)+^-co 2 -4] 

(ei—pi cos$1)(€2—p2 cos02) 
, (16) 

(ei—pi cos0i)2 (e2—^>2 cos02)
2 

2pxp2 sin0i sin02 cos(<?i~ ^ 2)[2€i(€ 1-co)+2e 2(e 2+co)+g 2-w 2-4] 2k2(px
2 sin20i+^2

2 sin202) 

(€1 — ̂ 1 COS0i)(€2 — p 2 COS02) + 

+4&2 

(ei—pi cosd1)(€2—p2 cos02) 

'e2—p2 cos02 ei—pi cos0i~] a>' 

•ei—pi cos0i €2~-p2 cos02J #' 
tTi. (17) 

From (12) and (15) we then have 

da=-
1 e2/Ze2\2p2dk 

(2ir)2hc 

7Z(?yp2dk 

\mc2) p\ k 
-d^dQ^k 

X i (TL+- - o r 
g4 ( ?

2 -w 2 ) 2 
(18) 

The form factors ^L(Q) (associated with Coulomb 
interactions with the nucleus), and tfriq) (associated 
with current interactions), are given in terms of the 
reduced nuclear matrix elements by 

5^(<?) = 

SMfo) = 

1 
£l<//l|3rc(CX>?)||/<>|», 

2It+l x=o 

1 » A+l\ 
—- mi—)z\{if\mE\,qm)\2 

2 / . + 1 x-i\ X / 

+ |</ /||3n;(Jfx>?)||A>|*]. 

(19) 

We note at this point that if we set k= ei— e2 (co=0) 
in our Eqs. (16) and (17), we obtain the expressions 
Tch and r m a g given by Ginsberg and Pratt2 for the 
elastic case: 

<7L(co=0)==rch, o-2'(a>=0)=rmag. 

Furthermore, if we consider only the Coulomb scatter
ing (3^=0) we find the expression for the inelastic 
bremsstrahlung cross section obtained by Perez y 
Jorba.7 

The general formula (18) has also been obtained by 
Nguyen Ngoc and Perez y Jorba.8 However, the 
technique used in their derivation differs considerably 
from that used here and in particular is not such as 
to make explicit the connection between the form factors 
and the reduced matrix elements. This will be of 
particular importance if one wishes to consider inelastic 

7 J. P. Perez y Jorba, J. Phys. Rad. 22, 733 (1961). 
8 H. Nguyen Ngoc and J. P. Perez y Jorba, Phys. Rev. (to be 

published). 
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electron scattering in which either the electron or the multiply the cross section by two, since the entire 
target nucleus is polarized. range of q is covered by letting <j>h go from 0 to ir.) As 

in I, the integration over dk is straightforward. The 
III. INTEGRATION OF THE CROSS SECTION integration over q2 is not carried out explicitly at this 

OVER PHOTON DIRECTIONS point, so that we obtain now the cross section for the 
inelastic scattering of an electron through an angle d: 

Sincefin an ordinary electron scattering experiment 
the emitted photon is not observed, we wish to integrate I e2 / Ze2\2 j>% dk ^ 
the differential cross section given by (18) over the ^^\nw2) ~7~JS 

angles of the photon direction, du and <£&. Owing to the 
presence of the form factors $L(q) and $T(q), the /•« 2 (5 \L 2 (#) $T2(q) 
convenient variables for this integration are clearly X / 
dk and q2. Using (4) and (5) we express the cross section ^q* 
in terms of $&, q2, & and <£. (In addition, we must with 

, , W)+——-WW)> (20) I qi (^-w2)2 

1 f /M?2) \ 
II (g2) = - / simhd&kTL (#k,q2Ad>) / ( ) 

2k k 
- { ( r , + W

2 - g 2 ) 2 + 4 ( J , + c o 2 - ?
2 ) [ € 1

2 + € 2 ( 6 2 + o > ) ] 
| P i - P * | ( l + o ! 2 - g 2 ) W / 2 ' 

+8^-2(^+2)[2€ 1 (€ 1 -co)+2e 2 (e 2 +co)+w 2 -g 2 ]} 

k 
{(rj+co2-9

2)2+4(.?+co2-g2)[€2
2+€1(e1-co)] 

+ 8 ^ 2 - 2 ( j , + 2 ) [ 2 6 1 ( € l - W ) + 2 e 2 ( € 2 + w ) + w
2 - g 2 ] } 

£[4e2(e2+a>)+co2-g2] 
[ (? 2 -g 2

2 ) [^+26 1 (6 1 - e2)]+4£eii>2
2 sin2??] 

W2 

^[4«1(61-co)+co2-g2] 

Dil* 
i(q2-qi%V+2ei(ei-e1)2-4ke^ sin2t?], (21) 

1 f //d(g2)\ 

•K J 0 ' \ 0<Pk 

2k k 
- { - (1)+co2-g2)2+4(1J+a>2-g2)[e1

2+e2(€2+W)] 
| p i - p » | (i?+co2-g2)ZV / ;r 

+ 8 ^ - 2 ( r , + 2 ) [ 2 e 1 ( e 1 - W ) + 2 € 2 ( € 2 + w ) + g 2 - c o 2 - 4 ] } 
k 

-{ - (r,+co2-g2)2+4( I ?+a ;
2-g2)[€2

2+e1(ei-co)] 
(H-«*-«Wr 

+8^ 2-2(r j+2)[2e 1(6 1-a . )+26 2(e 2+co)+g 2-a> 2-4]} 
C462(€2+w)+g2-co2-4] 

C(g 2 -g 2
2 )&+2e 1 (e 1 - e2)-]+4ke1p,i sin2.?] 

Di3'2 

k 
-C4e 1 (6 1 -a , )+g 2 -co 2 -4][(g 2 -g 1

2 ) [ r ;+2e 2 (e 2 -€ 1 ) ] -4^€^ 1
2 sin2??] 7L(g2) , (22) 

W 2 g2 

where We note that the integrations performed in going 
im= ]pi— p2 |— k, qu= |pi— p 2 | + / e , from Eq. (18) to Eq. (20) have been made without 

^=(px— p2)
2— (ei—e2)2, approximation. In Eq. (20) we again verify that by 

qii=^+V~2k[_ei-(e1/pi)p%cosd2, setting £ = e , - e 2 (« = 0) in our expressions (21) and 
q^^+v+2kZe1-(e2/p,)p1 costf], ( j ^ , w e o b t f " t h e ,quant i t ies RA and * „ „ given by 

D^p^-qiy+Wpi sin2,? , G l n s b e ' " g a M l P r a " f01' t h e d a S t l C C a S 6 : 

Z?2=^22(g2-gi2)2+4^1
2sin2ty. IL(u=Q) = kRah, IT(u=0) = kRmtr 



R A D I A T I V E T A I L F O R I N E L A S T I C E L E C T R O N S C A T T E R I N G B679 

IV. HIGH-ENERGY LIMIT OF THE CROSS SECTION and 

We now consider the high-energy limit of Eq. (20), 
neglecting terms of relative order l/e22. In taking this 
limit we place no restriction upon the order of magnitude 
of the excitation energy co, it can have any value 
between 0 and ei. For € i » l , €<£>>1, and sintf of order 
unity (sin^^>l/e2) the expression (23) can be rewritten: 

?7-4eie2sin2!??, 

g1
2«co2+4ei(€1-co)sin2^, 

q£~ w2+4e2(e2+co) sin2 |# , 

Z>x« €i2(g2-^2
2)2+4^€22 sin2tf, 

D2~e2
2(?2-?i2)2+4&2ei2 sin2??. 

(24) 

The entire discussion of Sec. I l l of I concerning the 
order of magnitude of the various terms applies here 
without change. I t should be noted, however, that in 
addition to the high-energy approximations, e{^>l, 
€2^>1, stated explicitly there, the assumption fcM was 
also made throughout that discussion. However, as 
shown in Sec. V of this paper, no restriction on k is in 
fact required for the applicability of the separation into 
peak and background contributions, and the final 
high-energy cross section, (25), is valid (neglected 
terms being of relative order l/e22) provided only that 
e i » l , €2^>1, and that d is not near 0° : CM/€2. As in 
the elastic case, the cross section will be strongly 
peaked about the values qi and </2 of the momentum 
transfer corresponding to photon emission in either 
the direction of the initial or final electron. The contri
bution to the cross section from these peaks in the 
integrand in Eq. (20) is denoted by P , and is of order 
lne. The contribution to the cross section from photons 
emitted in all other directions, the background contri
bution, is denoted by B. As in I [Eqs. (8) to (15) in 
that paper] we separate the contribution of the peaks 
from that of the background, writing explicit expressions 
for each of these contributions. The high-energy limit 
of the cross section given by (20) may then be written 
in the form 

1 e2 /Ze2\2 dk sin#d&d<i> 
^ — H - ) - — {P+B}, (25) 

2 T hc\mc2/ k ef 

where the contribution P from the peaks is 

lcos4i>f r6i2+(e2+w)2 ei 1 
P= \S(qt)\ , ln2 t l -

2 sin4M 

+S(qi)\ 

(€2+w)2 

-e22+(e!-co)2, 

- (6i-co) 2 
•ln2 62" 

€2+6 

—] (26) 

with 

S(q)= (l-a)2$L
2(q)+(l-a)$T2(q) 

+2$T
2(q) tan2J# (27) 

a—co2/q2, 

Here it seems interesting to mention that in the case of 
inelastic electron scattering without photon emission 
the high-energy limit of the cross section given by 
Alder ei al? may be written quite simply in terms of the 
expression S(q) given above: 

/ Ze2 \2 cos2|# 
= (: ) S(q). 

\2emc2/ sin4*# 
(28) 

If in S(q) we suppose u>2<Kq2 we find the expression 
commonly used in the analysis of inelastic electron 
scattering experiments to separate the two form 
factors.9 

The background contribution B is given by 

B = 4e2
2[>i2+ (e2+co)2] c o s 2 ^ / d(q2)-

\q2~q22\ 

+4ei2[e2
2+(€i-co)2]cos' 

J q 
d(q2)-

k2-?i2l 

T ^ 2 [€!(€l--C0) + €2(€2+C0)] 
+ / M(q)d(q2)+ 

J qm
2 2e i€ 2 

COS2 |# 
X 5 © l n s i n 2 ^ , (29) 

sin4 |# 
with 

M(q) = k{(el-e2)ll-2v(V+^2-q2)-^ 

- 2€l62&+ ( € i - e2)
2]-1/2}#(<z) lq" 

~-8ei€2[ei(€i~a))+€2(€2+co)] 
Xcos2^tG(q)-G(q)y(r]+a>2--q2) (30a) 

for 

qm
2<q2<q22, 

M(q) = k{€l+ e 2 - 26ie2[i?+ (ei~ e2)
2]-1/2}#(<7) /q* (30b) 

for 
q22<q2<qi2, 

M(q)=-k{(e1-e2)ll~2ri(rj+<,2-q2)-^ 

+ 26 1€2^+(€ 1 - € 2 ) 2 ] - 1 / 2}^(g)A 4 

+ 8eie2[ei(ei—co) + e2(e2+oj)] 

Xcos2idtG(q)-G(q)y(V+a>2-q2) (30c) 

for 
qi2<q2<qM

2, 
where 

? 2
2 <g 2 =co 2 +4ei€ 2 s in 2 ^<^i 2 , 

G(q)=(q2-u2)~2S(q), (31) 

H(q) = $L
2(q)+(l-a)-1$T2(q)-2(\-a)-2$T2(q). 

9 See, for example, W. C. Barber, Ann. Rev. Nucl. Sci. 12, 1 
(1962). 



B680 L . C . M A X I M O N A N D D . B . I S A B E L L E 

We have written the integrals in B in such a way that 
the lack of singularity in the integrand at q2=yj-\rcx)2 

is clear. 
As discussed in greater detail in Sec. IV of I, there 

are kinematic corrections of relative order em/M and 
dynamic corrections of relative order (e/lne) (Zm/M) 
due to nuclear recoil. These corrections being smaller 
than those introduced by using the Born approxi
mation, for the energy of experimental interest (30-1000 
MeV), we do not include them in this calculation. 

V. THE CASE OF 180° SCATTERING ANGLE; 
CONSIDERATION OF THE INFRARED 

DIVERGENCE 

In our discussion of the high-energy approximation, 
and in particular in our estimates of the order of 
magnitude of the various terms in the cross section, 
we have in fact assumed not only that the electron 
energies are large: e£>>l, e2^>l, but in addition that 
the photon energy is large: ky>\, and that the scattering 
angle is neither near 0° nor near 180°: sin$ = 0( l ) . I t is 
desirable, however, that we have a high-energy expres
sion for the cross section assuming only e£M, e2^>l, 
valid as well for scattering angles near or equal to 
180° and for arbitrary photon energy. On one hand, 
electron scattering experiments in the extreme back
ward direction10 require the validity for scattering 
angles near or equal to 180°. On the other hand, an 
analysis of the radiative tail in the neighborhood of 
either the elastic or one of the inelastic peaks, for €2 
close to €1—co (and hence &=€i—€2—co small), necessi
tates an expression for the cross section without 
restriction as to photon energy. This is also needed 
if one is to be able to integrate over the final energy of 
the electron in an energy region containing the elastic 
or one of the inelastic peaks, the addition of the radia
tive correction to the radiative tail giving then a finite 
integral. Indeed, if we integrate our cross section, (25), 
over the energy of the final electron to an upper limit 
€2= €1—co—Ak, then for small Ak we have 

I —de2 

J C2 dk 

1 e2/Ze2\2dti /•«-»-« dk 
= ( — ) — / {P+B}-

lirhcXmc2/ ei2 J M k 

1 e2/Ze2\2dtt 
= ( ) — ln(l/Ak){P(k = G)+B(k = 0)} 

2T hc\mc2/ ei2 

+te rms which remain finite as Ak —> 0. (32) 

The terms with the factor ln(l/A&) all come from the 
peak contribution (26) and from the last term in the 
background contribution (29). In fact, in (29) we 

10 G. A. Peterson and W. C. Barber, Phys. Rev. 128, 812 
(1962); J. Goldemberg and W. C. Barber, ibid. 134, B963 (1964). 

separated off this term in the integrand, integrating 
it in closed form, for just this purpose. The terms with 
the factor ln(l/A&) in the cross section integrated 
over the energy of the final electron are thus simply 

1 e2/Ze2\2dticos2(h#) 
( — ) ~S(qo) 

2Thc\mc2/ €i2sin4Gh*) 

Xln ( l /A^) [ ln (g 0
2 - co 2 ) - l ] , (33) 

where c70
2 = co2+4ei(€i—co) sin2(J$) is the momentum 

transfer to the nucleus in the limit k=0. Expression 
(33) with opposite sign is precisely the ln(l/A&) term 
in the radiative correction to the cross section for 
electron scattering, which has been given for the case 
of elastic scattering from a Coulomb potential by 
Schwinger11 and for inelastic scattering with both 
Coulomb and current interactions by Meister and 
Griffy.12 All the logarithmically divergent terms thus 
cancel upon addition of the radiative correction, which 
accounts for the emission and reabsorption of virtual 
photons and the emission of real, soft, photons of 
energy less than Ak} to the integral of the radiative 
tail, which accounts for the emission of real, hard, 
photons of energy greater than Ak. We see, therefore, 
that by including both the peak and background contri
butions we do not have to introduce the ad hoc "cali
bration" suggested by SchifL13 

We could, of course, use the exact Born approxi
mation cross section, Eq. (20), in which no approxi
mations have been made. This expression is, however, 
far more complicated than is needed, given the high-
energy conditions e£M, ei$>\ which are satisfied in the 
experiments of interest. Solely with these latter restric
tions, the separation of the cross section into peak and 
background contributions remains, as will be shown, 
extremely useful, giving clearly the order of magnitude 
of each of the terms and allowing us to neglect all 
contributions which are of relative order l/€22. Further
more, the background integrals, which must finally be 
computed numerically for an arbitrary form factor, 
are, by this procedure, put in a form such that the 
accuracy of standard integration techniques is adequate. 
In fact we shall find, after an analysis of which the 
essential steps will be given, that the cross section as 
given in Eq. (25) is valid for arbitrary k and for d 
close or equal to 180°, the only restrictive conditions 
being ei^>l, e2^>l, and d^>l/e2. 

We return to the cross section (20) and examine 
again the various terms appearing there, but now 
proceeding further before making any approximations. 
We consider first the terms with factor Dit2~ll2$L2 or 

11 J. Schwinger, Phys. Rev. 75, 898 (1949); J. W. Motz, Haakon 
Olsen, and H. W. Koch, Rev. Mod. Phys. 36, 881 (1964). 

12 N. T. Meister and T. A. Griffy, Phys. Rev. 133, B1032 (1964). 
13 L. I. Schiff, Phys. Rev. 87, 750 (1952). 
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DI,2~1I2$T2, which are, as previously noted in I, of the 
form 

CXM f(x)dx CXM dx 
i l l = / (* 0 ) 

J*m L(x-xG)2+a2Ji 
11/2 

rxM[f(x)-f(xo)~]dx 
+ , (34) 

where, as before, we denote the first integral on the 
right-hand side as the peak contribution Po, and the 
second as the background contribution Bo. Evaluating 
the first integral without any approximation we find 

dx 

£(x-x0)
2+a2J'2 

= 21n(6i+/>i) (35) 

for the terms with factor Dr112. [Note, from (21) and 
(22), that the terms with factor D2~

112 or D2~
m may be 

obtained from the corresponding terms with factor 
Dr112 or Drm by the substitutions ei+z e2, k—•» — k, 
co —» — co.] We then note that the order of magnitude 
of the background contribution from terms with factor 
$T2 is independent of k and -d (provided only that 
0 1 / e 2 ) and that the order of magnitude of the back
ground contribution from terms with factor 5\L2 is 
diminished only if both &/€2«l and ir—$<l/e2. 
Neglecting terms in the background contribution which 
are of order l/e2

2 relative to their value for &/e 2 =0(l ) 
and sintf = 0 ( l ) then gives Eq. (29). Although these 
order of magnitude considerations must be made 
before neglect of any terms, their plausibility is indi
cated in a simple fashion by Eq. (29): Noting, from 
(23), that qM2—q<m2:=0(ke), we see that the first two 
integrals in (29), with factor cos2(Jtf), are of order 
(k/e) cos2(|$) and that the third integral is of order 
k/e. The last term in (29) is of order cos2(id)$L

2+$T
2 

for all k. 
We next note that the order of magnitude of the 

peak contribution is independent of k, and that the 
peak contribution from terms with factor $T2 is of 
order hie relative to the background integral for all 
?9^>l/e2. The peak contribution from terms with factor 
^L 2 is, however, of order lne relative to the background 
integral only for sin$ = 0 ( l ) , but of relative order 
€2~2lne2 for IT—$<0(l/e2). (We note that these peak 
terms do not in fact vanish, but remain of relative 
order e2~

2 lne2, for d = w.) We then neglect, in the peak 
contribution, all terms which for all k and O l / e 2 are 
of order e2~

2 or e2~
2 lne2 relative to the value of the peak 

contribution for sintf = 0(1). 

We next proceed to the terms with factor Di,rzj2<5j} 
or Di 2~ZI2(5T2> However, we now write these terms in a 

form slightly different from that in I, namely 

XM b(x)f(x)dx 

I. Z(x—x0)
2+a2~] 13/2 

= b(xo)f(x0) I. 
dx 

. , C ( x - x „ ) 2 + a 2 ] ^ 

XM [b(x)—b{xa)~]dx 
+/(*o) 

[ 0 - * o ) 2 + a 2 ] 3 ' 2 

rx« b(x)£f(x)-f(xo)Jdx 

J*m O - * 0 ) 2 + a 2 ] 3 ' 2 
(36) 

Here we choose 

b(x) = 2kp22ei2 sm2d+pi(pi—p2 cosd)(x—xo) 

for terms with factor Drdl2, noting that b(x) occurs as 
a factor in all these terms and that b(xo) has the factor 
sin2#. We again call the first terms on the right-hand 
side of (36) the peak contribution, Pi , and now denote 
by first, Bh and second, P 2 , background contribution, 
respectively, the two remaining integrals. The second 
background integral B% may be shown to be of order 
e2~

2 me2 relative to BQ for all k and C£>l/€2, and hence 
may be neglected. The integrals appearing in the peak 
P i and first background Bi contribution may be 
evaluated without approximation and are, for terms 
with factor Dr312, 

b(xo)f(xo) 
dx 

[_(x-Xo)2+a2Ji2 

2f(x0)p22ei2 sin2# 

/(*<>) 
/ . 

pi2-2pip2 co$#+p22+pi2p22 sin2?? 

XM [b(x) — b(xo)~]dx 

- P i , (37) 

t(x-x0)
2+a2J!2 

2f(xo)(pi2-2p1p2 co^+p22-p22 sin2#) 

pi2-2pxp2 cos&+p2
2+pi2p22 sin2# 

=5i. (38) 

For s i n # = 0 ( l ) , the first background contribution Bi 
is thus of order l/e2

2 relative to the peak contribution 
and may be neglected. Further, if w—#<0(l/e2), then 
for the terms with factor S^2, both P i and Bi are of 
order l/e2

2 relative to Bo because of the term 4e2(e2+co) 
+oo2—q22 or 4€i(ei-—OJ)+O)2—^i2 in f(x0). This is, how
ever, not the case for terms with factor O^2. For these 
terms, if ir—$ = 0( l / e 2 ) then Ph Bh and B0 are all of 
the same order and hence must be kept, and if d — T 
then P i = 0, and P i and Po are of the same order. Thus, 
in order to have a cross section valid also for x—d 
< 0 ( l / e 2 ) we must keep both P i and B\. The sum of 
these two contributions is a very simple expression: 
Pi+Bi=— 2f(xo), which is just the value of P i for 
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INCIDENT ELECTRON ENERGY 148 MeV 
co =.478 MeV for L i 7 

I 1 1 1 i I 

4 0 6 0 90 120 150 180 

SCATTERING ANGLE ^ (DEGREES) 

FIG. 1. The ratio (P+B)/Ps as a function of the scattering 
angle for different values of a=k/ei and for 148-MeV incident 
electron energy, Ps being the sum of the logarithmic terms in P. 

e£>>l, e2̂ >>l3 and sint? = 0 ( l ) . For this reason, as well as 
those given in the discussion of this section, the expres
sion (25) for the cross section, previously derived 
assuming ky>l and sin# = 0 ( l ) , is in fact valid for 
arbitrary k and C^ l /€ 2 . We see, however, that the 
terms Pi , which are negligible for sim? = 0 ( l ) , must be 
retained for ir—$<0(l/e2). 

For the numerical calculations to follow, the ad
vantage of the above procedure is that we have inte
grated in closed form the highly peaked terms with 
factor Z>f3/2 or Z)2~

3/2, and put the integral P 0 in a form 
such that there are no peaks in the integrand. 

VI. NUMERICAL EVALUATION AND CONCLUSIONS 

To show the relative importance of the peak and 
background contributions we have performed the 
calculation of the radiative tail for a particular case. 
We chose the 0.478-MeV level of Li7 as this case has 
been studied experimentally by Bernheim and Bishop.14 

Those authors verified that the experimental values of 
the form factors for this level are in very good agreement 
with the theoretical values calculated by Willey15 using 
an odd-proton model. Following Willey we can write 
the two form factors for this particular level as 

$£= (0A4Z~2)x2e-2xll~0.572(ncq/Mc2)2J, (39) 

$T2= (0.81Z-2) {hcq/Mc2)2x2e-2x, (40) 

where x=q2/4/3 with q2 expressed in F - 2 and fi-1, which 
is the oscillator radial scale parameter, taken equal to 
4 F2 as suggested by the elastic scattering data. 

In Fig. 1 we have plotted the ratio of the complete 
expression P+B [Eqs. (26) and (29)] to the sum of the 

14 M. Bernheim and G. R. Bishop, Phys. Letters 5, 294 (1963). 
15 R..S. Willey, Nucl. Phys. 40, 529 (1963). 

logarithmic terms in P , which are the only ones to 
remain in the SchifT approximation.13 However, as 
long as one considers the emission of photons of large 
energy, the absolute cross section of the radiative tail 
is very small. The procedure generally followed in this 
type of calculation (taking into account only the 
logarithmic terms in the peak contribution in the 
integrated cross section) is then not too crucial. This 
can be seen in Fig. 2 where we have plotted the cross 
section as given by Eq. (25) for the radiative tail of the 
inelastic level as a function of the final energy for fixed 
initial energy and fixed scattering angle, using the 
form factors given in Eqs. (39) and (40). On the same 
figure we have also plotted the equivalent cross section 
for the elastic scattering, using Eq. (25) in which we 
set k—ei— €2 (co = 0). For this case we used, in the 
numerical calculations, the following expression for the 
longitudinal form factor: 

3 : L = ( l - 0 . 8 9 5 X l 0 ~ Y ) e x p ( - 0 . 4 6 4 X 1 0 - Y ) , (41) 

which is given by the independent-particle shell 
model16 assuming a radius of 2.1 F for Li7. As we had 
no theoretical expression available for the transverse 
form factor, we arbitrarily chose 

ST=0A$L. (42) 

This choice does not influence very much the final 
values as the calculation has been performed for a 
scattering angle far from 180°. 

Throughout this paper we have been considering the 
case of an electron inelastically scattered by a nucleus 
left in an excited state. We should like to point out 
that as long as the excited state has a fixed multi-

INCIDENT ELECTRON ENERGY 148MeV 

<>- = 120° 

ENERGY OF SCATTERED ELECTRONS IN MeV 

FIG. 2. The cross section calculated from Eq. (25) both for the 
elastic and first inelastic level for incident electron energy 148 
MeV and scattering angle 120°. 

16 R. Hofstadter, Ann. Rev. Nucl. Sci. 7, 231 (1957). 
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polarity our calculation is applicable independently of 
the way in which the nucleus becomes deexcited. In 
particular, our calculation can be applied to electro-
disintegration processes such as that occuring in the 
giant resonance transition. This will also apply to the 
case of quasielastic scattering or pion electroproduction 
where only the scattered electrons are detected, as in 
that case there should be no interference between 
different multipoles.17 However, if any of the products 

17 W. C. Barber, F. Berthold, G. Fricke, and F. E. Gudden, 
Phys. Rev. 120, 2081 (1960). See Ref. 21 to G. Kramer in this 
reference. 

I. INTRODUCTORY—EXPERIMENTAL PROCEDURE 

ACCORDING to the shell-model theory1 the 
neutron single-particle states are practically 

unaffected by the proton number as long as it is even. 
One, therefore, hopes to see about similar spectra of 
neutron states in neighboring isotones. Previous work 
of Cohen and Price2 and some present work of Schneid, 
Prakash, and Cohen3 with Sn isotopes has revealed a 
simple level structure of their neutron states which 
makes these isotopes very suitable for shell model 
studies via (d,p) and (d,t) reactions. From the aforesaid 
remark about proton number, Te isotopes (which have 
only two more protons than the Sn isotopes) should 
show a structure similar to the Sn isotopes and are, 
therefore, very suitable for shell-model studies in the 
mass region A ^125. 

Te isotopes 124,125,126,128, and 130 were deposited 
by vacuum evaporation on gold foils (^0.2 mg/cm2) to 
thicknesses varying from 0.5 to 1 mg/cm2. The thickness 

* Work supported by the National Science Foundation. 
f On Research Fellowship from Panjab University, Chandigarh, 

India. 
1 M. Meyer and J. H. D. Jensen, Elementary Theory of Nuclear 

Shell Structure (John Wiley & Sons, Inc., New York, 1955). 
2 B . L. Cohen and R. E. Price, Phys. Rev. 121, 1441 (1961). 
3 E. Schneid, A. Prakash, and B. L. Cohen (to be published). 

of electrodisin teg ration is detected, then the problem 
must be studied in greater detail. 
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of these targets may be uncertain by ^ 10% at the most. 
a These isotopes were bombarded with 14.8-MeV 
J deuterons from the University of Pittsburgh 47-in. 

fixed-frequency cyclotron. The reaction products were 
^ analyzed by a 60° wedge magnet spectrograph and 
j. detected in nuclear emulsion plates. Other details 

of the experimental method have been described 
[ previously.4 

At the time this experiment was done, it was believed 
I from the previous work of Cohen and Price2 that 
I measurement of a complete angular distribution in (d,p) 

reactions is no more helpful than cross-section measure-
j ments at a few key angles judiciously chosen to give 

information about ln, the orbital angular momentum of 
I the captured neutron. In the same work it was realized 

that (d,t) angular distributions are much less useful, as 
^ these were found to be relatively insensitive to differ

ences in angular momenta as compared to (d,p) angular 
distributions. Hence data were taken at 9, 17, 20, 30, 
39, and 50 deg for (d,p) reactions and only at 45 and 60 
deg for (d,t) reactions. The former choice was made by 

•» an examination of the (d,p) angular distributions for the 
r Sn isotopes from the work of Cohen and Price2 while the 

4 B. L. Cohen, R. H. Fulmer, and A. L. McCarthy, Phys. Rev. 
126, 698 (1962). 
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Shell-model states in the isotopes 123, 124, 125, 126, 127, 129, and 131 of Te have been investigated via 
(dyp) and (d,t) reactions with a typical resolution of 40 keV. Distorted-wave Born approximation calculations 
were used for the identification of the orbital angular momentum of the captured neutron in (d,p) reactions. 
The 11/2", 3/2+ and l / 2 + neutron subshells in the 50-82 neutron shell are found to be filling in these isotopes, 
although the 3/2+ and l /2 + subshells are not filling as rapidly as one would normally expect. There is also 
found some indication of the 7/2" and the 3/2" subshells from the next major shell filling in the heaviest 
isotopes. The 3/2+ single-particle state is found to lie the lowest in the isotopes 131 and 129, while 11/2" 
and l / 2 + are found to lie the lowest in the isotopes 127 and 125, respectively. Single-particle energies have 
been calculated using pairing theory. 


